
	 1	

Measuring movement to prospectively manage COVID-19 resurgence  
Nita Bharti1, Anthony Robinson2 

1 Biology Department, Center for Infectious Disease Dynamics; 2 Geography Department, GeoVISTA Center 
 
Background 
The successful control of infectious diseases in the absence of pharmaceutical interventions has 
often relied on behavioral interventions (BI) (1, 2) (3). Strategies to slow transmission of the 
current outbreak of coronavirus disease (COVID-19) have leaned heavily on BI, such as physical 
distancing and movement restrictions. Rapid assessment of the spatiotemporal efficacy of BI is 
critical (4). 
 
Reported cases of disease are delayed indicators of underlying behavior, contact rates, 
transmission dynamics, and total cases (fig. 1). The underlying mechanistic processes are 
difficult to measure, but are critically important early indicators of the impact of BI on 
transmission dynamics, i.e., reported cases today reflect physical distancing from two weeks ago 
(5). We will prospectively monitor activity levels starting in areas where the relaxation of BIs 
presents an immediate risk of a subsequent wave of transmission (China, South Korea, Italy). 
Rapid action will be particularly critical in areas where early behavioral interventions were 
successful. The prevention of cases during the initial outbreak leaves a large susceptible 
population vulnerable to secondary waves of transmission	(6). Monitoring movement 
indicators to guide preventative efforts is more effective than using epidemic data to inform 
reactive interventions. 
 
Project aims 
Aim 1: We will 
measure 
indicators of 
changes in 
movement and 
contacts in cities 
and towns (7). 
We will do this 
by quantifying remotely sensed changes in illumination and air pollution and explore the 
detection of vehicular traffic and radio frequency emissions before, during, and after BI. The 
ongoing satellite data collection allows us to monitor previous years to establish baseline non-
crisis dynamics and develop a timeline of behavioral change dynamics and disease incidence.  
Aim 2: We will use movement and behavior data with epidemiological data to fit stochastic 
epidemic models and estimate the impact of changes in movement on disease transmission.  
 
Study design: Using near real time data acquisition, we will prospectively monitor activity 
levels starting in areas where the relaxation of BI presents an immediate risk of a subsequent 
wave of transmission (China, South Korea, Italy). Continuous satellite data collection and global 
coverage allow our methods to be rapidly scaled up as the number of locations affected increases. 
Annual LandScan and WorldPop products quantify gridded static population sizes, which we 
will use to calibrate the dynamic measures listed below. We will monitor: 
 
1. Daily nighttime lights from NASA’s Black Marble imagery, Open Access (7, 8). 

Figure 1: The relative time of onset of each 
population-level event. Population 
movement, contacts, transmission, and real 
cases significantly precede reported cases. 
The lower tiers of this triangle are all 
earlier indicators of risk than reported 
cases. Relying on delayed data sources 
shifts action from prevention to reaction, in 
red. The dashed vertical line shows the 
delay when relying on epidemic data. 
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2. Air pollution, including Nitrogen dioxide emissions and other known indicators of 
transportation from NASA’s Aura Satellite Ozone Monitoring Instrument, European Satellite 
Agency’s (ESA) Sentinel-5 satellite, Open Access (9).  

3. Algorithm-based identification of vehicles for traffic estimates using Maxar’s multispectral 
imagery short-wave infrared band (30 cm) (PSU contract, no charge, value $30,000/yr). 

4. Density of radio frequency (RF) emissions, which measures amount, frequency, and location 
of communication device signals from Hawkeye 360’s satellite product (privately owned). 

 
Model  For each location analyzed, we will fit a stochastic SIR model (equation 1) to estimate 
the relationship between behavior and incidence (equation 1) (10).  
 
 𝑆!!! = 𝑆! − 𝛽!𝑆!𝐼!                                                  𝛽! = 𝑓(𝑥!)                    
𝐼!!! = 𝐼! + 𝛽!𝑆!𝐼! − 𝛾𝐼!                                                            
𝑅!!! = 𝑅! + 𝛾𝐼!         (Equation 1)                                                      (Equation 2) 
 
For each location: St, It and Rt are the susceptible, infectious, and recovered individuals at time t, 
and 𝛾 approximates a gamma distributed duration of infection, fit to epidemiological data. At 
t=0, the susceptible class is discounted by previously reported COVID-19 cases. 𝛽! is a time 
varying transmission parameter, which includes contact rates, and is informed by behavioral 
indicators, 𝑥! (equation 2). The shape of this function will be fit to each indicator and location.  
 
Expected outcomes: Pandemic decision-making requires actionable information and clear 
communication. We will produce the first visual representations displaying the dynamic contours 
of inhabited space, displaying population presence and absence across spatial scales (11). Our 
work will provide location-specific early warnings ahead of reported cases of COVID-19 (fig 1). 
These early indicators will guide surveillance and testing efforts and inform BIs to prevent 
resurgences (8). We will share code, data, model results, and all other findings with collaborators 
at humanitarian organizations, policy-makers, and researchers, as we have in the past (12). We 
will push frequent updates to GitHub, PSU’s ScholarSphere, and PSU’s unlimited Box storage.  
 
Innovation: Multiple remotely sensed data streams on human behavior and activity levels are 
more representative and inclusive across ages, income levels, and population sizes than any 
single data source (13). This is important as different demographic categories present varying 
levels of risk and access to care during this outbreak. Data streams 3 and 4 have never been used 
for epidemiological predictions and we are adapting these techniques to a novel context. By 
monitoring behavior dynamics, our methods will detect changes in disease risk before cases are 
reported, providing valuable time to prevent an outbreak. By using remotely collected data, we 
can collect data and provide early warnings without sending epidemiologists into epidemics. 
 
PI expertise: Bharti developed the methods to use remotely sensed behavioral indicators to 
inform epidemic prevention. She has expertise in disease modeling, spatial analysis, and human 
movement analysis. Robinson developed the visualization techniques to map the absence of 
activity in space. He has expertise in geospatial analysis, geovisualization, and cartography with 
focused applications in epidemiology and crisis management. 
External Funding targets: NASA Earth Science Research Program, NSF Ecology and 
Evolution of Infectious Disease Program. 
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